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Focal Areas: 
Ultimately, transfer operators provide a novel framework for predicting complex, partially-observed 
dynamical systems like the Earth System (focal area 2). In addition, transfer operators provide 
physics-based representation learning methods for data-driven analysis and prediction of coherent 
structures, like extreme events of the water cycle (focal area 3). 

Science Challenge: 

For chaotic dynamical systems, nonlinear instabilities lead to exponentially divergent trajectories in the 
evolution of system states. Unless a simulation is initialized with an infinite-precision snapshot of the 
state of the true system and all known physical effects that go into its evolution are directly computed, 
the future state predicted by the simulation will quickly diverge from that of the true system. Moreover, 
the Earth system is highly structured and contains localized coherent structures that are particularly 
important to predict. Predicting extreme events associated with coherent structures, like hurricanes and 
blocking events, is crucial for understanding the effects of global warming on the water cycle. 

Rationale: 

Whereas physics-based simulations like E3SM evolve individual states of a dynamical system, transfer 
operators [1] instead act on functions of the system state, known as observables. No matter how chaotic 
the underlying system, the evolution of system observables governed by transfer operators is always 
linear. But this comes at the cost of infinite-dimensional operators, since they act on all possible 
observables. Recent advances in machine learning have enabled sophisticated inference methods for 
finite-dimensional approximations of transfer operators that have shown great promise for predicting 
complex nonlinear systems. 

Compared to the simulation-based approach, transfer operator methods more directly correspond to the 
realities of predicting the actual Earth system. The instrumental measurements through which we can 
access glimpses of the true Earth system state are, in fact, observables whose true evolution is governed 
by transfer operators. Effects of unobserved degrees of freedom must be explicitly parameterized in 
simulations, whereas transfer operator methods implicitly account for these effects. The implicit 
representations of transfer operators make them similarly well-suited to identify coherent structures with 
complex geometries. Implicit representations may be learned from data, without the need to fit to an 
explicit representational basis like wavelets or Fourier modes [2]. 
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Narrative: 

A system observable is a bounded function of the state of a dynamical system. As mentioned, the output 
of a measurement device is an observable of the underlying system. The Koopman operator [3] U t 
governs the evolution of all such observables f and is defined via composition with the flow map Φt of 
the dynamical system: U t f = f ∘ Φt. That is, if we take a measurement of, say, temperature at a certain 
point and then want to know the value of a temperature there at a later time t we can either let the system 
evolve under Φt then take the measurement after time t, or we can apply the Koopman operator to get the 
time-shifted observable U t f . Thus the ground-truth for the prediction of any system observable is given 
by the action of the true (infinite-dimensional) Koopman operator. This includes the values of all 
instrument readings, as well as the value of the full Earth system state itself--known as the “full-state 
observable”. In the probabilistic setting, Koopman observables become random variables that are 
distributed according to densities whose evolution is governed by the Perron-Frobenius operator. 
Because these transfer operators are adjoints, it is not necessary to distinguish between them [4]. 
 
A formal statement of the prediction problem for the Earth system can be stated as follows. Let X be the 
vector-valued Koopman observable that represents the collection of all measurements made of the Earth 
system, through e.g. the Global Observing System. Similarly, let Y represent the “observables of 
interest” that we wish to predict. Define the target function Ft to be the map from the history of 
observations X to the future value of Y out to lead time t. As stated above, the true value of Y at the 
future time t is given in terms of the Koopman operator as U tY.  
The prediction problem then is to minimize ||Ft ∘ X - U tY|| [5].  
 
Stated this way, the prediction problem encompasses many types of predictive models. These include 
statistical models like (N)ARIMA(X) [6], as well as analog forecasting methods from nonlinear 
dynamics [5], [7]. The kernel analog forecasting method has shown promising results for Earth system 
predictability [8]. This of course also includes predictive models based on direct, finite-dimensional 
approximations of transfer operators [4]. Linear Inverse Modeling is a common approach in climate 
science, and is equivalent to the linear transfer operator approximation method known as Dynamic 
Mode Decomposition [9]. More sophisticated nonlinear approximation methods have not been widely 
employed from Earth system prediction. Notably, because neural networks are universal function 
approximators, they can be trained to approximate the target function Ft  [10]. 
 
There is a long way to go to scale up the transfer operator paradigm to the scale of Earth system models. 
Transfer operators however can also be used in conjunction with existing simulation models like E3SM. 
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One interesting possibility for improved mid-term prediction is to use transfer operators to predict 
(ensembles of ) instrument readings and assimilate ESM runs to those predictions. This will incorporate 
observed data from the true system into predictions made by the ESM, rather than just using that data for 
initializing a prediction run. In addition to Earth system prediction, transfer operators can also be used 
for physics-based representation learning to extract coherent structures from simulation data produced 
by ESMs. For example, Fig 5. in [11] shows ocean gyres identified using transfer operators and Fig. 4 in 
[12] shows a data-driven decomposition of the TMQ field in the CAM5.1 model (there are updated but 
currently unpublished results that extract hurricanes from this data). Ref. [13] uses transfer operators to 
identify blocking events and provide an early-warning system. 
 
Formally, rather than thinking of X as a collection of instrument readings, now think of X as abstractly 
representing a coherent structure, and we wish to use transfer operators to help identify and even define 
what X actually is in data. Typically, coherent structures are defined empirically, most often through 
orthogonal decomposition [14]. In the fluid dynamics community this is known as Proper Orthogonal 
Decomposition (POD), and Empirical Orthogonal Functions (EOFs) in the climate community. These 
methods attempt to identify coherent structures using linear features in the data. Transfer operators can 
capture nonlinear features that are physically motivated in terms of “almost-invariant sets”. From a 
Lagrangian perspective, this intuitively defines coherent structures as sets of points in the flow that tend 
to stay near one another over time. This approach has been used successfully to identify coherent 
structures relevant to the water cycle [11], [13], [15].  
 
Further development and deployment of these transfer operator approaches to coherent structure 
detection will provide automated yet principled methods for identifying extreme events of the water 
cycle in the enormous data sets produced by E3SM. Ensemble studies are currently used to model the 
effect of various forcing scenarios on the Earth system. Such studies produce 10s to 100s of TB of data 
that must subsequently be analyzed, and simple summary statistics are insufficient for understanding the 
effects on extreme events in these studies. How will hurricane frequency and intensity change? Will 
their typical trajectories change? These and similar questions for other events like atmospheric rivers 
and blocking events require the automated identification of such events in simulation data. Supervised 
deep learning methods are the standard in computer vision, and have been applied to detect extreme 
weather events [16]. This approach requires training data with “ground-truth” labels, which is provided 
by automated thresholding heuristics [17]. Thus the neural network is really just learning these 
heuristics. In contrast, the transfer operator approach, as described above, provides an unsupervised 
physics-based alternative to defining the ground truth for coherent structures.  
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